Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 73, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580714

RESUMO

Immune responses to COVID-19 vaccination are attenuated in adult solid organ transplant recipients (SOTRs) and additional vaccine doses are recommended for this population. However, whether COVID-19 mRNA vaccine responses are limited in pediatric SOTRs (pSOTRs) compared to immunocompetent children is unknown. Due to SARS-CoV-2 evolution and mutations that evade neutralizing antibodies, T cells may provide important defense in SOTRs who mount poor humoral responses. Therefore, we assessed anti-SARS-CoV-2 IgG titers, surrogate neutralization, and spike (S)-specific T-cell responses to COVID-19 mRNA vaccines in pSOTRs and their healthy siblings (pHCs) before and after the bivalent vaccine dose. Despite immunosuppression, pSOTRs demonstrated humoral responses to both ancestral strain and Omicron subvariants following the primary ancestral strain monovalent mRNA COVID-19 series and multiple booster doses. These responses were not significantly different from those observed in pHCs and significantly higher six months after vaccination than responses in adult SOTRs two weeks post-vaccination. However, pSOTRs mounted limited S-specific CD8+ T-cell responses and qualitatively distinct CD4+ T-cell responses, primarily producing IL-2 and TNF with less IFN-γ production compared to pHCs. Bivalent vaccination enhanced humoral responses in some pSOTRs but did not shift the CD4+ T-cell responses toward increased IFN-γ production. Our findings indicate that S-specific CD4+ T cells in pSOTRs have distinct qualities with unknown protective capacity, yet vaccination produces cross-reactive antibodies not significantly different from responses in pHCs. Given altered T-cell responses, additional vaccine doses in pSOTRs to maintain high titer cross-reactive antibodies may be important in ensuring protection against SARS-CoV-2.

2.
Cell Chem Biol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38547863

RESUMO

Programmed death-ligand 1 (PD-L1) drives inhibition of antigen-specific T cell responses through engagement of its receptor programmed death-1 (PD-1) on activated T cells. Overexpression of these immune checkpoint proteins in the tumor microenvironment has motivated the design of targeted antibodies that disrupt this interaction. Despite clinical success of these antibodies, response rates remain low, necessitating novel approaches to enhance performance. Here, we report the development of antibody fusion proteins that block immune checkpoint pathways through a distinct mechanism targeting molecular trafficking. By engaging multiple receptor epitopes on PD-L1, our engineered multiparatopic antibodies induce rapid clustering, internalization, and degradation in an epitope- and topology-dependent manner. The complementary mechanisms of ligand blockade and receptor downregulation led to more durable immune cell activation and dramatically reduced PD-L1 availability in mouse tumors. Collectively, these multiparatopic antibodies offer mechanistic insight into immune checkpoint protein trafficking and how it may be manipulated to reprogram immune outcomes.

3.
Immunity ; 57(1): 40-51.e5, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38171362

RESUMO

Individuals who clear primary hepatitis C virus (HCV) infections clear subsequent reinfections more than 80% of the time, but the mechanisms are poorly defined. Here, we used HCV variants and plasma from individuals with repeated clearance to characterize longitudinal changes in envelope glycoprotein E2 sequences, function, and neutralizing antibody (NAb) resistance. Clearance of infection was associated with early selection of viruses with NAb resistance substitutions that also reduced E2 binding to CD81, the primary HCV receptor. Later, peri-clearance plasma samples regained neutralizing capacity against these variants. We identified a subset of broadly NAbs (bNAbs) for which these loss-of-fitness substitutions conferred resistance to unmutated bNAb ancestors but increased sensitivity to mature bNAbs. These data demonstrate a mechanism by which neutralizing antibodies contribute to repeated immune-mediated HCV clearance, identifying specific bNAbs that exploit fundamental vulnerabilities in E2. The induction of bNAbs with these specificities should be a goal of HCV vaccine development.


Assuntos
Anticorpos Neutralizantes , Hepatite C , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-Hepatite C/química , Hepacivirus , Proteínas do Envelope Viral/genética
4.
J Infect Dis ; 229(1): 54-58, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37380166

RESUMO

Orthopoxvirus-specific T-cell responses were analyzed in 10 patients who had recovered from Mpox including 7 people with human immunodeficiency virus (PWH). Eight participants had detectable virus-specific T-cell responses, including a PWH who was not on antiretroviral therapy and a PWH on immunosuppressive therapy. These 2 participants had robust polyfunctional CD4+ T-cell responses to peptides from the 121L vaccinia virus (VACV) protein. T-cells from 4 of 5 HLA-A2-positive participants targeted at least 1 previously described HLA-A2-restricted VACV epitope, including an epitope targeted in 2 participants. These results advance our understanding of immunity in convalescent Mpox patients.


Assuntos
Orthopoxvirus , Humanos , Antígeno HLA-A2 , Vírus Vaccinia , Epitopos , Proteínas Virais
5.
J Clin Invest ; 132(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588376

RESUMO

A prophylactic hepatitis C virus (HCV) vaccine that elicits neutralizing antibodies could be key to HCV eradication. However, the genetic and antigenic properties of HCV envelope (E1E2) proteins capable of inducing anti-HCV broadly neutralizing antibodies (bNAbs) in humans have not been defined. Here, we investigated the development of bNAbs in longitudinal plasma of HCV-infected persons with persistent infection or spontaneous clearance of multiple reinfections. By measuring plasma antibody neutralization of a heterologous virus panel, we found that the breadth and potency of the antibody response increased upon exposure to multiple genetically distinct infections and with longer duration of viremia. Greater genetic divergence between infecting strains was not associated with enhanced neutralizing breadth. Rather, repeated exposure to antigenically related, antibody-sensitive E1E2s was associated with potent bNAb induction. These data reveal that a prime-boost vaccine strategy with genetically distinct, antibody-sensitive viruses is a promising approach to inducing potent bNAbs in humans.


Assuntos
Hepacivirus , Hepatite C , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-Hepatite C , Humanos , Proteínas do Envelope Viral/genética , Viremia
6.
mBio ; 13(1): e0173721, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038917

RESUMO

Herpesviruses are ubiquitous double-stranded DNA viruses that cause lifelong infections and are associated with a variety of diseases. While they have evolved multiple mechanisms to evade the immune system, they are all recognized by the innate immune system, which can lead to both localized and systemic inflammation. A more recently appreciated mechanism of herpesvirus innate immune activation is through inflammasome signaling. The inflammasome is an intracellular multiprotein complex that, when activated, leads to the release of proinflammatory cytokines, including IL-1ß and IL-18, and activation of the inflammatory programed cell death pathway known as pyroptosis. Despite the herpesviruses sharing a similar structure, their mechanisms of inflammasome activation and the consequences of inflammasome activation in cases of virus-associated disease are not uniform. This review will highlight the similarities and differences among herpesviruses with regard to their mechanisms of inflammasome activation and impacts on diseases caused by herpesviruses. Furthermore, it will identify areas where additional studies are warranted to better understand the impact of this important innate immune signaling program on the pathogenesis of these common viruses.


Assuntos
Herpesviridae , Viroses , Humanos , Inflamassomos/metabolismo , Caspase 1/metabolismo , Inflamação , Herpesviridae/metabolismo , Imunidade Inata , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...